Sparse Unmixing of Hyperspectral Data by Exploiting Joint-Sparsity and Rank-Deficiency

نویسندگان

  • Fanqiang Kong
  • Chending Bian
چکیده

Abstract—In this work, we exploit two assumed properties of the abundances of the observed signatures (endmembers) in order to reconstruct the abundances from hyperspectral data. Joint-sparsity is the first property of the abundances, which assumes the adjacent pixels can be expressed as different linear combinations of same materials. The second property is rank-deficiency where the number of endmembers participating in hyperspectral data is very small compared with the dimensionality of spectral library, which means that the abundances matrix of the endmembers is a low-rank matrix. These assumptions lead to an optimization problem for the sparse unmixing model that requires minimizing a combined l2,p-norm and nuclear norm. We propose a variable splitting and augmented Lagrangian algorithm to solve the optimization problem. Experimental evaluation carried out on synthetic and real hyperspectral data shows that the proposed method outperforms the state-of-the-art algorithms with a better spectral unmixing accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperspectral Unmixing via Low-Rank Representation with Space Consistency Constraint and Spectral Library Pruning

Spectral unmixing is a popular technique for hyperspectral data interpretation. It focuses on estimating the abundance of pure spectral signature (called as endmembers) in each observed image signature. However, the identification of the endmembers in the original hyperspectral data becomes a challenge due to the lack of pure pixels in the scenes and the difficulty in estimating the number of e...

متن کامل

Sparsity-Based Unsupervised Unmixing of Hyperspectral Imaging Data Using Basis Pursuit

Abstract—Mixing in the hyperspectral imaging occurs due to the low spatial resolutions of the used cameras. The existing pure materials “endmembers” in the scene share the spectra pixels with different amounts called “abundances”. Unmixing of the data cube is an important task to know the present endmembers in the cube for the analysis of these images. Unsupervised unmixing is done with no info...

متن کامل

Distributed Unmixing of Hyperspectral Data With Sparsity Constraint

Spectral unmixing (SU) is a data processing problem in hyperspectral remote sensing. The significant challenge in the SU problem is how to identify endmembers and their weights, accurately. For estimation of signature and fractional abundance matrices in a blind problem, nonnegative matrix factorization (NMF) and its developments are used widely in the SU problem. One of the constraints which w...

متن کامل

Hyperspectral Unmixing via $L_{1/2}$ Sparsity-Constrained Nonnegative Matrix Factorization

Hyperspectral unmixing is a crucial preprocessing step for material classification and recognition. In the last decade, nonnegative matrix factorization (NMF) and its extensions have been intensively studied to unmix hyperspectral imagery and recover the material end-members. As an important constraint for NMF, sparsity has been modeled making use of the L1 regularizer. Unfortunately, the L1 re...

متن کامل

تجزیه‌ ی تُنُک تصاویر ابرطیفی با استفاده از یک کتابخانه‌ ی طیفی هرس شده

Spectral unmixing of hyperspectral images is one of the most important research fields  in remote sensing. Recently, the direct use of spectral libraries in spectral unmixing is on increase. In this way  which is called sparse unmixing, we do not need an endmember extraction algorithm and the number determination of endmembers priori. Since spectral libraries usually contain highly correlated s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017